طراحی مدل سیستم استنتاج فازی عصبی - تطبیقی ( ANFIS) برای ارزیابی و پیش‌بینی سطح مدیریت دانش سازمان با محوریت نوآوری.

نویسندگان

  • عادل آذر استاد گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران.
چکیده مقاله:

در سال‌های اخیر مدیریت دانش به یک موضوع مهم و حیاتی در تمامی سازمان‌ها تبدیل‌شده است. یکی از عوامل مؤثر در ایجاد و گسترش نوآوری، مدیریت دانش است. با نوآوری، برتری‌های بلندمدت سازمان در عرصه‌های رقابتی حفظ شود. ارزیابی و پیش‌بینی سطح مدیریت دانش برای مدیران بسیار بااهمیت است. در میان روش‌های نوین مدل‌سازی، سیستم‌های فازی از جایگاه ویژه‌ای در زمینه‌های مختلف علوم برخوردارند. این پژوهش از نظر هدف، کاربردی و با توجه به روش گردآوری داده‌ها از نوع پیمایشی است. سیستم استنتاج فازی عصبی - تطبیقی (ANFIS) روش مناسبی برای حل مسائل غیرخطی است. این روش، ترکیبی از روش استنتاج فازی و شبکه عصبی مصنوعی است که از مزایای هردو روش بهره می‌برد. در این تحقیق تعداد 5 مؤلفه اصلی برای سنجش و پیش‌بینی سطح مدیریت دانش سازمان، به عنوان ورودی سیستم استنتاج فازی انتخاب گردید. برای ارزیابی عملکرد مدل از پارامترهای مجذور میانگین مربعات خطا (RMSE)، درصد خطای نسبی(ε)، میانگین خطای مطلق(MAE) و ضریب تبیین (R2) استفاده‌شده است که به ترتیب مقادیر 12/0 ، 0.0152%، 036/0 و 995/ به‌دست‌آمده است و این نشانگر دقت و قابلیت اعتماد به مدل مذکور است.. خروجی این پژوهش، ﻳﻚ ﺳﻴﺴﺘﻢ اﺳﺘﻨﺘﺎج ﻓﺎزی ﻫﻮﺷﻤﻨﺪ (ANFIS) است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی مدل پیش‌بینی و ارزیابی ظرفیت نوآوری شرکت‌های دانش‌بنیان با رویکرد استنتاج فازی عصبی- تطبیقی(ANFIS)

      ارزیابی ظرفیت نوآوری شرکت‌های دانش بنیان و پیش‌بینی میزان ظرفیت نوآوری آن‌ها برای این شرکت‌ها بسیار حائز اهمیت است و تصمیم در خصوص انتقال یا بسط فناوری شرکت تابع میزان ظرفیت نوآوری است. هدف اصلی این تحقیق، طراحی مدل ارزیابی ظرفیت نوآوری شرکت‌های دانش بنیان با رویکرد استنتاج فازی عصبی- تطبیقی است. سیستم استنتاج فازی عصبی - تطبیقی ([1]ANFIS) روش مناسبی برای حل مسائل غیرخطی است. ANFIS ترکیبی...

متن کامل

مدل‌سازی بارش- رواناب با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) و رگرسیون خطی چندمتغیره (MLR)

در این پژوهش، کارآیی سیستم فازی- عصبی برای برآورد رواناب ناحیه کوهستانی حوضه هراز مورد ارزیابی قرار گرفت. هدف ایجاد مدلی با توابع و درجه عضویت مناسب است که بتواند رابطه بارندگی- رواناب را در یک حوضه به­درستی برقرار کند. بدین منظور برای پیش­بینی رواناب، 44 ترکیب مختلف از پارامترهای بارندگی، دما، تبخیر، دبی جریان و شاخص بارش پیشین با تأخیر زمانی بین آنها به­صورت روزانه طی دوره 32 سال آماری وارد م...

متن کامل

مدل سازی مکانی مناطق اکتشاف نفتی با سیستم استنتاج فازی عصبی تطبیقی (anfis) در gis

فرآیند اکتشاف منابع هیدروکربنی فرآیندی بسیار پیچیده و پرهزینه می باشد. در این فرایند فاکتورهای متعدد زمین شناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق می شوند.  طراحی بهترین مسیر برای برداشت داده های لرزه نگاری و همچنین  تعیین بهترین محل برای حفر چاه های اکتشافی از اهمیت ویژه ایی برخوردار است، زیرا عدم دقت در انتخاب موقعیت مکانی، صرف هزینه و زمان زیاد در طول عملیات می باشد. هدف این تحقیق تعیین م...

متن کامل

مدل‌سازی مکانی مناطق اکتشاف نفتی با سیستم استنتاج فازی عصبی تطبیقی (ANFIS) در GIS

فرآیند اکتشاف منابع هیدروکربنی فرآیندی بسیار پیچیده و پرهزینه می‌باشد. در این فرایند فاکتورهای متعدد زمین‌شناسی، ژئوشیمی و ژئوفیزیک تهیه و باهم تلفیق می‌شوند.  طراحی بهترین مسیر برای برداشت داده‌های لرزه‌نگاری و همچنین  تعیین بهترین محل برای حفر چاه‌های اکتشافی از اهمیت ویژه‌ایی برخوردار است، زیرا عدم دقت در انتخاب موقعیت مکانی، صرف هزینه و زمان زیاد در طول عملیات می‌باشد. هدف این تحقیق تعیین م...

متن کامل

طراحی مدل پیش بینی حجم ترافیک روزانه برون شهری با استفاده از سیستم استنتاج فازی مبتنی بر شبکه عصبی(ANFIS)

 تقاضای روزافزون استفاده از وسایل حمل و نقل شخصی، مشکل تراکم ترافیک را به یکی از مهم ترین بحران ها در اکثر کلان شهرهای جهان تبدیل کرده است. تأثیرات زیست محیطی، اجتماعی و اقتصادی که گره های ترافیکی بر جوامع بشری می گذارد محققین را برآن داشته است که به دنبال راه کارهایی برای مقابله با آن باشند. یکی از این راه کارها پیش بینی حجم ترافیک روزانه است. پیش بینی ترافیک به کنترل کننده ها کمک می کند ت...

متن کامل

بررسی امکان کاربرد سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) در برآورد بار رسوب معلق بابل‌رود

Sediment load estimation is one of the most important issues in rivers & dam reservoirs management and generally in water projects. Various empirical equations show that proper analytical or empirical method is not suggested for correct estimation of suspended sediment, yet. In the present study, to assessment of closer estimation to actual data of transported sediment in Ghoran Talar station l...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 1

صفحات  171- 189

تاریخ انتشار 2020-04-08

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023